
Chapter 1 Document 110 Page 1 

Requirements Change Management Guideline 
A guideline written by an experienced software development executive describing the 
importance of and the requirements for implementing comprehensive requirements 
change management. Building on 20 years of lessons learned, this guideline provides 
the suggested components, processes, and workflows for a robust change 
management system. It also argues convincingly the need to include evaluation and 
communication of the impacts of any change requests.  

Change is inevitable. Knowing how to handle changes and requests for changes is 
vital to delivering the right product on time. Properly estimating the impact of a 
requested change is one of the most important jobs of the engineering manager, and 
communicating that impact in a clear way is vital to the success of the project. It's 
almost embarrassing to ask for an additional 4 hours of budget for a change, and 
perhaps that's not always necessary. But the cumulative effect of 50 4–hour 
changes—that's easier to understand and shows why it's necessary to have a process 
that includes impact evaluation and documentation. 

The case illustrations and lessons learned will also be helpful for anyone trying to build 
a business case for implementing a requirements management system in their 
organization. 

To implement change management successfully, three elements must be defined, 
implemented, and adopted. This guideline provides an overview and practical 
examples for all three elements: 

 A Requirements Management System, for creating and tracking requirement 
baselines. This can be created in a spreadsheet or in a dedicated requirements 
management tool.  

 A Change Process, with no exceptions or circumvention allowed. A typical 
software change process is illustrated. 

 A Change Tracking System to keep track of it all. Suggested elements and 
workflow are provided. 



Chapter 1 Document 110 Page 2

Requirements Change Management 
Halfway through coding, the Product Manager requests an additional feature. The 
developer says it's easy. It is recorded in a Word document, but never included in the 
official requirements specification. The developer's project work ends up late because 
of this "easy" feature. Worse, the new feature changes some internal software 
interfaces; during testing, QA discovers that four features which use those interfaces 
aren't working as specified. The choice: remove the added feature, or revise four other 
features to work with it. Either will mean a large schedule slip. 

If there's one thing that was consistent throughout my career, it was that as soon as 
requirements were approved, a change request was in process for some part of the 
system. It's the nature of engineering work, especially on software projects. Software 
seems easier to change than hardware, and most of the time that's true. But "easier" 
doesn't mean "free." Properly estimating the impact of the requested change was one 
of the most important jobs of the engineering manager, and communicating that 
impact in a clear way was vital to the success of the project. It's almost embarrassing 
to ask for an additional 4 hours of budget for a change, and perhaps that's not always 
necessary. But the cumulative effect of 50 4–hour changes—that's easier to 
understand and shows why it's necessary to have a process that includes impact 
evaluation and documentation. 

Many times the "simple" change that was being requested was not well thought out, 
and resulted in either an implementation that was not what was intended or more work 
than originally believed. Sometimes the developer started work on a change before it 
was approved, only to discover that it never was. 

This guideline captures lessons learned during my career about the importance of 
actively managing the change process, and of building impact evaluation and impact 
communication into that process.  

Intended Audience: 

 VP Engineering, SW/QA Directors, and Project Managers who want to keep 
their projects on schedule and avoid surprises due to unexamined change 
impacts 

 Development Managers and Technical Leads who want to ensure that their 
developers are working on approved features to a schedule that is understood 
by everyone 

 Developers who want to ensure that they are building the right product 

 Heads of PMOs or Project Sponsors who want to feel confident that the 
anticipated product will be released as promised 



Chapter 1 Document 110 Page 3

OVERVIEW 

Has anyone ever worked on a project that was delivered exactly as originally specified, 
with no changes whatsoever? When requirements change, who analyzes how the 
greater complexity might affect existing development or project end dates? Who 
approves the changes, and how do developers know when approval has been given?   

As development continues, it is certain that requirements will need to be clarified or 
corrected. It is inevitable that some requirements will change, and just as inevitable 
that additional requirements will be requested. A well-documented set of requirements 
forms the basis for changes and additions and allows impact estimates to be made, 
given, and accepted with confidence. The management of this requirements baseline 
and how it is used in the change management process is documented in this 
guideline. 

Requirements engineering involves a requirements capture process followed by a well 
defined and enforced change management process, and includes a traceability 
process. This guideline describes the second component: requirements change 
management.  

Requirement specifications change because: 

 Requirements were unclear and need to be clarified 

 The customer reverses a decision or wants something added to the product 

 Marketing needs a change or addition to better market the product 

 The schedule is slipping, and simplification is possible 

 A feature can't be implemented as specified or as designed 

A typical change management nightmare goes something like this. Halfway through 
development, a change request comes in from the customer. The Product Manager 
wants to please them, and everyone thinks the change is an improvement. The 
developers are told to go ahead, and the requirements document is even revised to 
reflect the new requirement. But much of the existing code is now obsolete, and the 
new code is more complicated to implement. The product schedule is not updated 
because no one was asked to evaluate the change's impact. The schedule slips, the 
change is blamed, and the customer says, "If we had known that that change would 
have caused a 6-month slip in the project, we never would have requested it."   

Change is inevitable. Knowing how to handle changes and requests for changes is 
vital to delivering the right product on time. To implement change management, three 
elements must be defined, implemented, and adopted: 

 A Requirements Management System 

 A Change Process 



Chapter 1 Document 110 Page 4

 A Change Tracking System 

 Each of these is discussed below. 

REQUIREMENTS MANAGEMENT SYSTEM 

Knowing your requirement base when development begins is key to the change 
process. Only then can you start making and tracking changes.  

Marketing people like to think of requirements in terms of entire features, but within 
each feature are many low-level requirements that must be developed and tested. In 
this guideline, we will call these "requirement objects." Individual requirement objects 
may change without greatly affecting what is considered the "feature."  

For example, a Reporting feature might describe how a user requests a report, how 
the user knows when the report has completed, and how the user views the report 
results. Suppose a change is made to the notification method (e.g. using an email 
instead of an alert). A requirement object must be changed, but the basic Reporting 
feature is not greatly altered.  

It might appear that since no one seems to care whether notification is via email or an 
alert it doesn't need to be documented as a requirement. But the developer cares and 
needs guidance, the tester cares and needs to understand how to test the feature, and 
product consistency might matter to someone eventually.  

To effectively track changes, it is important to have a method of tracing the change to 
only the affected requirement object(s). To do this, it is critical to have the 
requirements documented in a Requirements Management (RM) system that 
distinguishes between each requirement object and allows attributes to be associated 
with each one individually. Change tracking features in word processors are not 
particularly suited to this, but spreadsheets can be used successfully, and there are a 
variety of dedicated Requirements Management tools. A requirements management 
tool has the added advantages of automatic assignment of unique IDs for each 
requirement object and implementing change history tracking down to the individual 
object. See the INCOSE Requirements Management Tools Survey at 
http://www.paper-review.com/tools/rms/read.php for a thorough comparison of many 
Requirements Management tools. 

Regardless of what tool is used, it is important to define the attributes to associate with 
each requirement object.  

Critical Attributes for a Requirement Object 

Attribute Use 

Requirement ID (should be 
unique within the entire 
system) 

Uniquely defines the requirement so it can be 
referenced unambiguously 



Chapter 1 Document 110 Page 5

Attribute Use 

Requirement text Exactly specifies a feature that must be developed 
and also serves as the basis for testing 

Version or Release Specifies the implementation version, allowing: 
An understanding of what is in the current release 
Inclusion of requirements in future releases 
A reminder of which release implemented or 
changed a requirement 

Change Requirement ID (CR 
ID) 

References each change in the change tracking 
system that changed (or created) this requirement, 
by ID code or number. 

Traceability might require us to expand these attributes, but Requirement ID, 
Requirement text, Release, and CR ID are sufficient for managing change. These 
attributes provide for requirement baselines and change tracking.  

Using a spreadsheet, the management system might look like this. 

 

Figure 1 Example of a requirements management system implemented as a simple 
spreadsheet 

A dedicated requirements management tool—whether commercial or open source—
usually has several important advantages over a simple spreadsheet solution like the 
one above: 

 Automatic creation of the Requirement ID, ensuring that each will be unique 

 History of requirement changes: who, what, when, and how 



Chapter 1 Document 110 Page 6

 Baseline control 

 Access control (who is allowed to modify) 

 Automated parsing of Word or other text documents, so requirements can be 
written and initially reviewed in a format that is easily read 

 Inclusion of graphics in the requirement text 

 Automatic links to the change request (if in a compatible tool) 

 Links to other files, such as higher-level specifications, test plans, reports, etc. 

 Complex filtering based on attribute values 

CHANGE PROCESS 

As always, it's important to start with a process and follow it. In the case of a software 
project, the Requirement Change process can be similar to the Code Change or Bug 
Tracking process, and many companies combine the two, distinguishing in who may 
initiate, review, and authorize, and in some of the process flow rules. A combined 
process is usually called the Software Change process. This process is usually 
implemented with a Software Change Review Board, or SCRB, that is composed of 
representatives of the stakeholders, typically: 

 Quality Assurance (QA) / Test – can act as chair and recorder 

 Engineering (Director, VP, and/or CTO) 

 Marketing 

 Client Technical Support 

  



Chapter 1 Document 110 Page 7

Example Requirements Change Process 

Process Step Parties involved 

Document the requirement revision(s) or the new 
requirement(s), including the rationale for the 
change (especially if work has already begun or if 
it alters something already developed). 

Requestor can be anyone, but is 
typically someone in: 

 Marketing – usually to 
add functionality or clarify 
a requirement based on a 
question from 
Engineering 

 Engineering – usually to 
change something that is 
overly complicated or to 
clarify a requirement 

Create a change request that includes this 
documentation.  

Requestor 

If this change is merely clarification of an existing requirement and there is no 
schedule impact: 

Approve the request. SCRB or Change Review Board 

Revise the requirements baseline. QA or whoever is authorized 

Notify the developer (who is probably already part 
of the process). 

Engineering representative  

Otherwise (if there is a real change): 

Estimate the work involved in this change (both 
development and test), the impact on other parts 
of the system, and the impact on the overall 
schedule. 

Engineering 

Create a new schedule estimate. Engineering management 

Approve (or deny) the request. If approved: SCRB or Change Review Board 

 Change the requirements baseline.  QA or whoever is authorized 

 Make sure developer knows of and 
understands change. 

Engineering management 

 Make sure all stakeholders know of 
schedule impact based on the clarification 
or new requirement.  

SCRB or Change Review Board 



Chapter 1 Document 110 Page 8

Process Step Parties involved 

 Make sure QA bases testing on the 
documented and approved requirements 
that include all changes and additions. 

QA 

Negotiating Changes 

If any change or addition cannot be handled without changing end date, and if that is 
not acceptable to Marketing (which is normally the case), you will need to decide what 
to trade off in order to avoid impacting the end date. This might mean: 

 adding staff to implement this or another feature/requirement (increasing cost). 

 shuffling assignments to use someone who otherwise would have finished 
earlier (increasing cost). 

 removing another, less-important requirement/feature (trading off features). 

 simplifying the request so it is more easily implemented (trading off features). 

 delaying all or part of the change until a later release (trading off features). 

Think of the project schedule, cost, and feature set as a triangle. 

If any one of these items change, at least one of the others must somehow change. 

 If there is a request for added scope (a new feature or expansion of an existing 
feature), then unless another feature is traded off or simplified, either the 
schedule must change or the cost (staffing) must change.  

 If an accelerated release schedule is requested, then either the cost must 
increase (more staff), or the features must be reduced.  

 If a cost reduction is requested (typically this means fewer staff, but it could 
mean less-experienced staff), then the features should be reduced (extending 
the schedule with fewer staff may or may not reduce total cost). 

CHANGE REQUEST TRACKING SYSTEM 

Change Requests are tracked using a tracking system that allows a Change Request 
(CR) to be opened, reviewed, acted upon (authorized or denied), and eventually 
closed. The change tracking system requires several components. 

A Workflow Definition, which describes: 

 the possible states for the CR (e.g. Open, Resolved, etc.) 



Chapter 1 Document 110 Page 9

 the roles of system users (who can file a CR, who can change the state of a 
CR, who can be assigned a CR and under what circumstances, who can close 
a CR, who can view a CR) 

 how the CR flows from one state to another (who can move the CR from one 
state to another, which flows are possible, which ones are typical, which ones 
are disallowed) 

Data items that define the request, such as: 

 CR ID 

 title 

 submittal date 

 requestor name 

 description of problem or modification requested, including rationale 

 type of CR (bug, enhancement, change, etc.) 

 release or version that the problem was found in 

 how to reproduce it, if it is a perceived bug 

 requirement ID(s) affected or not being met 

 release or version where the fix/change should be made 

 severity of the problem or issue 

 priority of the fix or change 

Data items that define the state of the CR and other data filled in by those assigned 
to do so, such as: 

 current state of the CR (e.g., new, open/evaluate, open/fix, resolved, closed) 

 current CR assignee 

 person(s) to be notified when the CR changes state or when a comment is 
added 

 person assigned (to be assigned or was assigned) as developer 

 estimated or actual development hours 

 person assigned (to be assigned or was assigned) as tester 



Chapter 1 Document 110 Page 10

 estimated or actual test hours 

 assigned code reviewer, or a status indicating the code was reviewed (and 
possibly, date) 

 resolution date (date code was fixed/changed) 

 resolution description, including files fixed/changed 

 date of test completion 

Example Software Change Request Workflow 

Action CR State CR 
Assignee 

Change Request submitted by Requestor New SCRB 
Chair 

Review Change Request at SCRB Meeting Open-
Estimate 

Eng. Mgr. 

Estimate new work and record as a comment in the 
Change Request 

Open-
Estimate 

SCRB 
Chair 

SCRB approves change Open-Fix Eng. Mgr. 

Engineering Manager updates specification with change Open-Fix Developer 

Developer makes the change to the code Resolved QA 

QA tests change Closed  

You can see how this process could be used for tracking anything. It often forms the 
basis of an "issues" tracking system or includes "issues" as a different type of item to 
track (as opposed to bugs or software enhancements). It is crucial, however, that the 
change process includes and is accepted by all organizations. 

It is also important that the authority be defined within this process. For example, in the 
action "SCRB approves change," who really has the ability to authorize a change 
request? Hopefully it's someone who understands what is required of the product, like 
the Product Manager. But who can authorize a change that would result in a longer 
schedule? That might be the CEO, a Vice President, or a Division President.  



Chapter 1 Document 110 Page 11

Administrative Information 

Revision Author Date Sections 
Affected 

Change Summary  

1.0  1/3/2009   

     

 

Current Version 1.0 

Date 1/3/2009 

Master Document Chapter Number 1 

Document ID 110 

 


